Diabetic nephropathy (DN) is a type of nephropathy that is caused by a diabetic condition. Diabetic nephropathy is seen in type 1 and type 2 diabetes. End-stage renal disorders are brought on by DN. Diabetic nephropathy is thought to be linked to metabolic changes in the body. Proteinuria and glomerular filtration rate are the two most crucial diagnostic and prognosis measures for diabetic kidney disease (DKD), yet both have significant disadvantages. Novel biomarkers are thus increasingly required to improve risk factors and detect disease at an early stage. Controlling blood glucose and vital sign like body temperature and blood pressure, reducing cholesterol levels, and blocking the renin-angiotensin system are the standard treatments for diabetic patients. On the other hand, if used too late within the course of the disease, these therapeutic techniques can only provide partial relief from nephropathy.The complicated pathophysiology of the diabetic kidney, which experiences a variety of severe structural, metabolic, and functional alterations, represents one of the most important obstacles to the event of effective therapeutics for DN. Despite these issues, new diabetes models have identified promising treatment targets by identifying the mechanisms that control important functions of podocytes and glomerular endothelial cells. It has been shown in the vast majority of trials that renin-angiotensin system inhibitors combined with integrative therapies work well for DN. Combining sodium-glucose cotransporter-2 inhibitors and renin-angiotensin-aldosterone system blockers is a novel way to slow down the course of DKD by lowering inflammatory and fibrotic indicators brought on by hyperglycemia, which is more effective than using either medicine alone. Aldosterone receptor inhibitors and advanced glycation end-product inhibitors are two recently produced medications that may be used successfully to treat DN.
In regions where the disease is endemic, Monkeypox (MPV) transmission related to healthcare has been seen on numerous occasions. This disease has episodes of occurrence in certain regions around the globe, such as in the Democratic Republic of Congo's (DRC) Tshuapa region. Here, the disease was found with a prevalence of 0.35 per 1000, as per data collected by the Centers for Disease Control and Prevention (CDC) of the United States (US). Data also shows approximately 100 confirmed cases of MPV for every infection among Healthcare Workers (HCWs). These findings and scientific research on burns, superficial wounds, herpes, eczema vaccine, and other conditions indicate that MPV sufferers might get an advantage from medical care to lessen the effects of weakened skin and mucosa. This should involve guarding delicate anatomical areas like the eyes and genitalia, maintaining enough hydration and nourishment, and preventing and treating consequences like secondary bacterial diseases. In the DRC, this disease was first recognized in 1970. Since then, it has spread to numerous nations around the globe and gained substantial epidemiological significance. The most recent epidemic has taken place in 2022 worldwide. The viruses that cause MPV and cowpox are currently regarded as emerging. Because of the rise in international travel, the popularity of exotic pets, and the decline in smallpox vaccination rates, they pose a significant danger of spreading. Although it is believed that this viral illness will eventually go away on its own, the possibility of the pandemic raises several serious problems for the general public's health. In addition to providing a broad overview of the Monkeypox Virus (MPXV), this study will detail the epidemiology, clinical hallmarks, assessment, and treatment of MPV sufferers.
BACKGROUND The clavicle or collar bone is a modified long bone. It is the first bone to ossify in the membrane. The inferior surface of shaft of clavicle presents a subclavian groove. A nutrient foramen lies at the lateral end of the groove. The nutrient artery is derived from the supraclavicular or clavicular branch of thoracoacromial artery. A bone is supplied by a nutrient artery which passes through the small tunnel called as nutrient foramina. In orthopaedic procedures to preserve the circulation, the topographical knowledge of the nutrient foramen is important. The study was undertaken to analyse nutrient foramina in adult human clavicles in relation to their number, position, direction, and distribution over bone length. METHODS Our study consisted of 67 adult dry human clavicles (31 right sides and 36 left sides). The number, topography and direction of the foramina were studied. The distance of foramina from the sternal end & total length of the clavicles were measured in millimetres by using digital Vernier calipers. The foramen index was calculated by applying the Hughes formula: FI = (DNF TL) x 100. RESULTS Nutrient foramina were present in all the clavicles. Most of the clavicles have single nutrient foramen. We observed 62 (68.13 %) foramina on the posterior surface mostly in the middle 1 / 3rd region. All the nutrient foramina were directed towards acromial end and the foramina index (FI) was 50.2. CONCLUSIONS The topographical knowledge of the nutrient foramen is important in orthopaedic procedures like nail plating, K wire fixation, reduction, internal fixation devices for the treatment of fracture, coracoclavicular ligament repair and in free vascularized bone graft to preserve the circulation. KEY WORDS Clavicle, Nutrient Foramina, Nutrient Artery, Foramina Index (FI)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.