1996
DOI: 10.1090/s0025-5718-96-00772-7
|View full text |Cite
|
Sign up to set email alerts
|

The 4-triangles longest-side partition of triangles and linear refinement algorithms

Abstract: Abstract. In this paper we study geometrical properties of the iterative 4-triangles longest-side partition of triangles (and of a 3-triangles partition), as well as practical algorithms based on these partitions, used both directly for the triangulation refinement problem, and as a basis for point insertion strategies in Delaunay refinement algorithms. The 4-triangles partition is obtained by joining the midpoint of the longest side with the opposite vertex and the midpoints of the two remaining sides. By mea… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

1
45
0

Year Published

1997
1997
2014
2014

Publication Types

Select...
7
2

Relationship

1
8

Authors

Journals

citations
Cited by 60 publications
(46 citation statements)
references
References 21 publications
1
45
0
Order By: Relevance
“…A well accepted acronym used to name this class of mesh subdivision is nT-LE, where n is the number of new triangles (T) produced after a single subdivision and LE stands for longest edge. So, we found in the literature well studied longest-edge partition as 2T-LE, 3T-LE, 4T-LE and 7T-LE, see [14,15,9] and the references therein. It should be noted that the iterative application of these partitions yields good-quality meshes, in the sense that they do not degenerate.…”
Section: Introductionmentioning
confidence: 95%
See 1 more Smart Citation
“…A well accepted acronym used to name this class of mesh subdivision is nT-LE, where n is the number of new triangles (T) produced after a single subdivision and LE stands for longest edge. So, we found in the literature well studied longest-edge partition as 2T-LE, 3T-LE, 4T-LE and 7T-LE, see [14,15,9] and the references therein. It should be noted that the iterative application of these partitions yields good-quality meshes, in the sense that they do not degenerate.…”
Section: Introductionmentioning
confidence: 95%
“…Longest edge-based refinement has become popular in last decade in the context of mesh refinement [9,11,14]. A well accepted acronym used to name this class of mesh subdivision is nT-LE, where n is the number of new triangles (T) produced after a single subdivision and LE stands for longest edge.…”
Section: Introductionmentioning
confidence: 99%
“…Various properties of partitions generated by such algorithms were proved in a number of works in the 70-th [7,16,18,19]. Later, in the 80-th, mainly due to efforts of M. C. Rivara, bisection-type algorithms became popular also in the FEM community for mesh refinement/adaptation purposes [12,13,14,15]. Several variants of the algorithm suitable for standard FEMs were also proposed, analysed and numerically tested in [1,2,3,8,10,11] (see also references therein).…”
Section: Introductionmentioning
confidence: 99%
“…Bey [4] and Zhang [24] proposed a generalisation of this method to three dimensions. Other methods based only on bisection have been introduced by Rivara [21,22] or Mitchell [18] in two dimension and Bänsch [3] or Maubach [17] in three dimensions. All these methods depend on the choice of the element and on the dimension.…”
Section: Introductionmentioning
confidence: 99%