A recent transcriptome analysis of graded patient glioma samples led to identification of AEBP1 as one of the genes upregulated in majority of the primary GBM as against secondary GBM. Aebp1 is a transcriptional repressor that is involved in adipogenesis. It binds to AE-1 element present in the proximal promoter of aP2 gene that codes for fatty acid binding protein (FABP4). A comprehensive study was undertaken to elucidate the role of AEBP1 overexpression in glioblastoma. We employed complementary gene silencing approach to identify the genes that are perturbed in a glioma cell line (U87MG). A total of 734 genes were differentially regulated under these conditions (≥ 1.5-fold, P ≤ 0.05) belonging to different GO categories such as transcription regulation, cell growth, proliferation, differentiation, and apoptosis of which perturbation of 114 genes of these pathways were validated by quantitative real time PCR (qRT-PCR). This approach was subsequently combined with ChIP-chip technique using an Agilent human promoter tiling array to identify genomic binding loci of Aebp1 protein. A subset of these genes identified for Aebp1 occupancy was also validated by ChIP-PCR. Bioinformatics analysis of the promoters identified by ChIP-chip technique revealed a consensus motif GAAAT present in 66% of the identified genes. This consensus motif was experimentally validated by functional promoter assay using luciferase as the reporter gene. Both cellular proliferation and survival were affected in AEBP1-silenced U87MG and U138MG cell lines and a significant percentage of these cells were directed towards apoptosis.