The exposure of the four subunits of the acetylcholine receptor from Torpedo californica on both the extracellular and cytoplasmic faces of the postsynaptic membranes of the electroplaque cells has been investigated. Sealed membrane vesicles containing no protein components other than the receptor were isolated and were shown to have 95% of their synaptic surfaces facing the medium. The susceptibility of the four receptor subunits in these preparations to hydrolysis by trypsin both from the external and from the internal medium was used to investigate the exposure of the subunits on the synaptic and cytoplasmic surfaces of the membrane. It was shown by sodium dodecyl sulfate gel electrophoresis of the tryptic products that all four subunits are exposed on the extracellular surface to a similar degree. All four subunits are also exposed on the internal surface of the membrane, but the apparent degree of exposure varies with the subunit size, the larger subunits being more exposed. The results are discussed in terms of a possible topographic model of the receptor as a transmembrane protein complex.Excitable membrane vesicles highly enriched in the acetylcholine receptor (AcChoR) have been purified from the electric organs of several species of electric fish. These membrane preparations possess the properties of nicotinic postsynaptic membranes: they bind a-neurotoxins (1, 2) and cholinergic ligands (3, 4) and they possess distinct binding sites for local anesthetics (4-7) and the alkaloid histrionicotoxin (8, 9). Binding of cholinergic agonists results in the flux of inorganic cations through the vesicular membrane (10-13), and the demonstration of such flux through membrane preparations containing only the AcChoR protein (14,15) suggests that the AcChoR functions as a cation-translocating protein complex.Detergent-extracted, chromatographically purified AcChoR from Torpedo californica sediments both as a 9S monomer and as a 13.7S dimer (16). Except for one account (17), both species have been found to consist of four subunits of 40,000, 50,000, 60,000, and 65,000 daltons, with binding sites for a-neurotoxins, agonists, and some antagonists located on the 40,000-dalton subunit (18-30). These four subunits were found to possess a high incidence of amino acid sequence homology (31) and to exist in both membrane-bound and detergent-solubilized receptor as a pentameric complex with a stoichiometry of 2:1:1:1 (31, 32). This stoichiometry dictates a size of 255,000 daltons for the AcChoR monomer, in agreement with the experimentally determined values of 250,000-270,000 daltons (33-35). In light of this molecular definition of the AcChoR and of its defined function alluded to above, it is of interest to determine the topography of its subunits in the membrane and eventually to assign a specific function to each polypeptide.By use of antibodies to purified AcChoR, it has been found at the electron microscopic level by both thin-sectioning (36) and examination of replicas of intact and sheared membrane vesicles (37...