Somatic mutations of the nuclear and mitochondrial DNA and alterations in DNA methylation levels in mammals are well known to play important roles in ageing and various diseases, yet their specific contributions await further investigation. For plants, it has also been proposed that unrepaired DNA damage and DNA polymerase errors accumulate in plant cells and lead to increased somatic mutation rate and alterations in transcription, which eventually contribute to plant ageing. A number of studies also show that DNA methylation levels vary depending on the age of plant tissue and chronological age of a whole plant. Recent studies reveal that prolonged cultivation of plant cells in vitro induces single nucleotide substitutions and increases global DNA methylation level in a time-dependent fashion. Changes in DNA methylation are known to influence DNA repair and can lead to altered mutation rates, and, therefore, it is interesting to investigate both the genetic and epigenetic integrity in relationship to ageing in plants. This review will summarise and discuss the current studies investigating somatic DNA mutation and DNA methylation levels in relation to plant ageing and senescence. The analysis has shown that there still remains a lack of clarity concerning plant biological ageing and the role of the genetic and epigenetic instabilities in this process.