General rightsThis document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms At the base of E3, interstratification of cap carbonate with ice-rafted and redeposited glacial sediments occurs. Early diagenetic stabilization of carbonate mineralogy from a precursor, possibly ikaite, to calcite or dolomite is inferred. E3 is predominantly dolomitic silt-shale, with sub-millimetre lamination, lacking sand or current-related sedimentary structures. Thin fine laminae are partly pyritized and interpreted as microbial mats. Dolomite content is 25-50%, with δ 13 C values consistently around +4‰, a value attributed to buffering by dissolution of a precursor metastable carbonate phase. Local calcite cement associates with low δ 13 C values. The carbonates form silt-sized, chemically zoned rhombic crystals from an environment with dynamically changing Fe and Mn. Three-dimensional reconstructions of cm-scale disturbance structures indicate that they represent horizontally directed sock-like folds, developed by release of overpressure into thin surficial sediment overlying an early-cemented layer.A shoaling upwards unit near the top of E3 displays calcium sulphate pseudomorphs in dolomite in the north, but storm-dominated limestones in the south, both being overlain by peritidal oolitic dolomites, exposed under the succeeding Wilsonbreen glacial deposits. There is no Trezona δ 13 C anomaly, possibly implying top-truncation of the succession.Regular 0.5 m-scale sedimentary rhythms, reflecting subtle variations in sediment texture or composition occur throughout E3 and are interpreted as allocyclic. They are thought to be mainly primary in origin, locally modified slightly during early diagenetic cementation. Rhythms are proposed to represent ca. 18 kyr precession cycles, implying 6-8 Myr deposition between glaciations.