Background
In recent years much attention has been given to the lack of reproducibility in biomedical research, particularly in pre-clinical animal studies. This is a problem that also plagues the alcohol research field, particularly in consistent consumption in animal models of alcohol use disorders. One often overlooked factor that could affect reproducibility is the maintenance diet used in pre-clinical studies.
Methods
Herein, two well-established models of alcohol consumption, the “drinking in the dark” (DID) procedure and the continuous two-bottle choice paradigm (C2BC), were employed to determine the effects of diet on ethanol consumption. Male C57BL/6J were given one of six standard rodent-chow diets obtained from Purina LabDiet®, Inc. [St. Louis, MO; Prolab® RMH 3000] or Harlan Laboratories Inc. [Indianapolis, IN; Teklad Diets T.2916, T.2918, T.2920X, T.7912, or T.8940]. A separate group of animals were used to test dietary effects on ethanol pharmacokinetics and behavioral measures following intraperitoneal (IP) injections of various doses of ethanol.
Results
Mice eating Harlan diets T.2916 (H2916) and T.2920X (H2920) consumed significantly less ethanol and exhibited lower blood ethanol concentrations (BECs) during DID; however, during C2BC animals maintained on Harlan T.7912 (H7912) consumed more ethanol and had a higher ethanol preference than the other diet groups. Ethanol consumption levels did not stem from changes in alcohol pharmacokinetics, as a separate group of animals administered ethanol IP showed no difference in BECs. However, animals on Harlan diet T.2920X (H2920) were more sensitive to alcohol-induced locomotor activity in an open-field task. No diet dependent differences were seen in alcohol-induced sedation as measured with loss of righting reflex.
Conclusions
Although these data do not identify a specific mechanism, together they clearly show that the maintenance diet impacts ethanol consumption. It is incumbent upon the research community to consider the importance of describing nutritional information in methods, which may help decrease inter-laboratory reproducibility issues.