Reciprocal crosses were made between plants that had nuclear genes of S. tuberosum L. ssp tuberosum combinated, by recurrent backrossing, with cytoplasmic factors of S. phureja Juz. & Buk. and, separately, of S. tuberosum ssp. andigena (Juz. & Buk.) Hawkes. Significant differences in growth between 19 of 23 intra-cytoplasmic reciprocal progenies occurred in vigor at one or more growth stages during the season and/or in yield as measured by tuber number and weight. If no transmission of cytoplasmic factors occurred through the pollen, the cytoplasmic factors of the parents were the same, and these reciprocal differences were caused by parental chromosomal gene mechanisms such as maternal effect, pollen-tube selection, and/or imprinting. Early seedling vigor was, in some cases, associated with greater seed weight, but this did not account for all of the reciprocal contrasts. The data do not show whether these parental effects are a result of maternal and/or paternal effects. Analysis to determine whether parental effect was a single gene character or alleles expressed at two levels, or multi-genie and so expressed at multiple levels, was based on a study of progeny of ten parents that were used in more than one reciprocal pair combination. The data showed that the parents could be classified at eight successive levels of relative effectiveness as staminate or pistillate parents. Of 23 crosses, 19 showed significant differences between reciprocal progenies that were consistent with this eight-level array. The data support the interpretation that parental effect is a multi-genic character.