As an extension of traditional radar, quantum radar has the advantages of enhancing detection capability and improving resolution, which has attracted enormous attentions. However, the researches on the scattering characteristics of quantum radar are limited to two-dimensional targets, impeding the practical applications of quantum radar. In this paper, the universal expression of quantum radar cross section (QRCS) for three-dimensional targets is introduced. We have demonstrated the achievement of largescale computing of QRCS by using GPU accelerating technique. And QRCSs of typical two-and threedimensional targets are compared with previous work to verify the accuracy, and the improved efficiency of acceleration method is indicated simultaneously. Ultimately, the QRCS of a typical electrically large and complex target, B2 aircraft, is simulated unprecedentedly. The proposed method is convinced to be an efficient tool for analyzing quantum radar scattering properties of electrically large structures.