There is a need to accurately design pipelines to meet the expected increase in the construction of carbon dioxide (CO 2 ) pipelines after the signing of the Paris Climate Agreement. CO 2 pipelines are usually designed with the assumption of a pure CO 2 fluid, even though it usually contains impurities, which affect the critical pressure, critical temperature, phase behaviour, and pressure and temperature changes in the pipeline. The design of CO 2 pipelines and the calculation of process parameters and fluid properties is not quite accurate with the assumption of pure CO 2 fluids. This paper reviews the design of rich CO 2 pipelines including pipeline route selection, length and right of way, fluid flow rates and velocities, need for single point-to-point or trunk pipelines, pipeline operating pressures and temperatures, pipeline wall thickness, fluid stream composition, fluid phases, and pipeline diameter and pressure drop calculations. The performance of a hypothetical pipeline was simulated using gPROMS (ver. 4.2.0) and Aspen HYSYS (ver.10.1) and the results of both software were compared to validate equations. Pressure loss due to fluid acceleration was ignored in the development of the diameter/pressure drop equations. Work is ongoing to incorporate fluid acceleration effect and the effects of impurities to improve the current models.