This study presents a comparative analysis of energy production over the year 2015 by the grid connected experimental photovoltaic (PV) system composed by different technology modules, which operates under temperate climate meteorological conditions of Eastern Poland. Two thin film technologies have been taken into account: cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS). Rated power of each system is approximately equal to 3.5 kWp. In addition, the performance of a polycrystalline silicon technology system has been analyzed in order to provide comprehensive comparison of the efficiency of thin film and crystalline technologies in the same environmental conditions. The total size of the pc-Si system is equal to 17 kWp. Adequate sensors have been installed at the location of the PV system to measure solar irradiance and temperature of the modules. In real external conditions all kinds of modules exhibit lower efficiency than the values provided by manufacturers. The study reveals that CIGS technology is characterized by the highest energy production and performance ratio. The observed temperature related losses are of the lowest degree in case of CIGS modules.
This study presents a comparative analysis of energy production over the year 2015 by the grid connected experimental photovoltaic (PV) system composed by different technology modules, which operates under temperate climate meteorological conditions of Eastern Poland. Two thin film technologies have been taken into account: cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS). Rated power of each system is approximately equal to 3.5 kWp. In addition, the performance of a polycrystalline silicon technology system has been analyzed in order to provide comprehensive comparison of the efficiency of thin film and crystalline technologies in the same environmental conditions. The total size of the pc-Si system is equal to 17 kWp. Adequate sensors have been installed at the location of the PV system to measure solar irradiance and temperature of the modules. In real external conditions all kinds of modules exhibit lower efficiency than the values provided by manufacturers. The study reveals that CIGS technology is characterized by the highest energy production and performance ratio. The observed temperature related losses are of the lowest degree in case of CIGS modules.
“…This study presents a review on the existing shading analyzers and introduces a new shading analyzer and site evaluator based on a small telescope using two encoders as well as describing interface program extensively. The features of the newly designed device and newly developed software are compared with the others [21][22][23].…”
Shading analyzer systems are necessary for selecting the most suitable installation site to sustain enough solar power. Afterwards, changes in solar data throughout the year must be evaluated along with the identification of obstructions surrounding the installation site in order to analyze shading effects on productivity of the solar power system. In this study, the shading analysis tools are introduced briefly, and a new and different device is developed and explained to analyze shading effect of the environmental obstruction on the site on which the solar power system will be established. Thus, exposure duration of the PV panels to the sunlight can be measured effectively. The device is explained with an application on the installation area selected as a pilot site, Denizli, in Turkey.
“…Moreover, the performance ratio (PR) of sc-Si is in the range of 70%-90%, a-Si is about 70% and CdTe is only 42%-72%. Alternatively, Kesler et al [99] also conducted a performance analysis between the c-Si and thin film for another location, Antalya, Turkey, and reported that performance of the both technology is very close to each other. Even they specified the reason is the high ambient temperature of that area, however, the rated efficiency of that technologies may play an important role in this case, which means that if the rated efficiency is almost the same, their performance will be close to each other.…”
The performance of photovoltaic (PV) solar cells is influenced by solar irradiance as well as temperature. Particularly, the average photon energy of the solar spectrum is different for low and high light intensity, which influences the photocurrent generation by the PV cells. Even if the irradiance level and the operating temperature remain constant, the efficiency will still depend on the technological parameters of the PV cell, which in turn depends on the used PV material’s absorption quality and the spectral responsivity and cell structure. This study is devoted to the review of different commercially available technologies of PV cells include crystalline silicon (c-Si), polycrystalline silicon (pc-Si), cadmium telluride (CdTe), and copper indium gallium selenide (CIGS). We tried to correlate the spectral response or the photocurrent of different PV cells with the variations of the solar spectrum, environmental conditions, and the material properties and construction of PV cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.