Due to the observed increase of photovoltaic installations capacity in Poland, the research on the performance of different modules became an important issue from the practical and scientific point of view. This paper is intended to help system planners to choose photovoltaic modules and inverters taking into account the actual operating conditions. The study is devoted to the assessment of four different technologies of photovoltaic modules: polycrystalline silicon (pc-Si), amorphous silicon (a-Si), copper indium gallium selenide (CIGS), and cadmium telluride (CdTe). The data was collected at a solar plant located at high latitude location, in the eastern part of Poland, during the fourth year of the plant operation. The influence of irradiance on the temperature and efficiency of modules was studied. The results show that the efficiency of the pc-Si and CIGS modules decreases with rising temperature; however, the efficiency of the a-Si and CdTe modules is more stable. The impact of changing external conditions on the inverter efficiency as well as array and system losses during various seasons of the year was shown. The inverter efficiency reaches up to 98% in summer and drops as low as 30% in winter. Small average array capture losses of 7.41 (kWh/kWp)/month (0.25 h/day) are observed for the CIGS and 10.4 (kWh/kWp)/month (0.35 h/day) for pc-Si modules. The a-Si and CdTe array losses are higher, up to 2.83 h/day for CdTe in summer. The results indicate high annual energy yields of the pc-Si and CIGS modules, 1130 kWh/kWp and 1140 kWh/kWp, respectively. This research provided new data on pc-Si and especially the performance of the thin film modules and losses in a photovoltaic installation under temperate climate.
This study presents a comparative analysis of energy production over the year 2015 by the grid connected experimental photovoltaic (PV) system composed by different technology modules, which operates under temperate climate meteorological conditions of Eastern Poland. Two thin film technologies have been taken into account: cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS). Rated power of each system is approximately equal to 3.5 kWp. In addition, the performance of a polycrystalline silicon technology system has been analyzed in order to provide comprehensive comparison of the efficiency of thin film and crystalline technologies in the same environmental conditions. The total size of the pc-Si system is equal to 17 kWp. Adequate sensors have been installed at the location of the PV system to measure solar irradiance and temperature of the modules. In real external conditions all kinds of modules exhibit lower efficiency than the values provided by manufacturers. The study reveals that CIGS technology is characterized by the highest energy production and performance ratio. The observed temperature related losses are of the lowest degree in case of CIGS modules.
In the last few years, Poland has experienced a significant increase in photovoltaic (PV) installations. A noticeable contribution to this dynamic growth belongs to the prosumers. This paper presents the energy efficiency analysis of nine prosumers’ PV installations located in South-Eastern Poland. Eight of the systems are grid-connected and one is a hybrid (PV with the energy storage). New technology modules with efficiencies between 19% and 21%, as well as various PV system configurations related to orientation and tilt, were taken into consideration. Final yields were found and a financial assessment was presented. The average annual specific yield of all analyzed PV systems was found to be 990.2 kWh/kWp. The highest ratio of yearly energy production was noted for the system of bifacial monocrystalline silicon modules with 20.3% efficiency (1102.9 kWh/kWp). Median and maximum yields obtained by this system for the best insolation month (June 2021) were 6.64 kWh/kWp and 7.88 kWh/kWp respectively. The annual specific yield of other systems ranged between 868.8 kWh/kWp and 1075.5 kWh/kWp in dependency on module efficiency, system orientation, or tilt angle. The amount of energy produced in the summer half-year was found to be significantly higher (between 76% and 83% depending on the system) than in the winter period. The self-consumption ratio of the energy produced by the PV system installed for company prosumers ranged from about 50% in the summer months to almost 97% in winter. The payback period was below 8 years with the levelized cost of electricity equal to 0.14 €/kWh.
Thin film Cu(In,Ga)Se2 (CIGS)-based solar cells with relatively high efficiency and low material usage might become a promising alternative for crystalline silicon technology. The most challenging task nowadays is to decrease the PV module fabrication costs by application of easily scalable industrial process. One of the possible solutions is the usage of magnetron sputtering system for deposition of all structures applied in CIGS-based photovoltaic device. The main object of these studies was fabrication and characterization of thin films deposited by sputtering technique. Structural and electrical properties of the sputtered films were analyzed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray Powder Diffraction (XRD), and four-point probe resistivity measurements. The presented findings revealed technological parameters for which sheet resistance of molybdenum (Mo) back contact decreased up to 0.3 Ω/□ and to even 0.08 Ω/□ in case of aluminum layer. EDS analysis provided evidence for the appropriate stoichiometry of CIGS absorber (with CGI and GGI equal to 0.96 and 0.2, respectively). XRD characterization confirmed high-quality chalcopyrite polycrystalline structure of Cu(In,Ga)Se2 film fabricated at relatively low substrate temperature of 400 °C. Characteristic XRD peaks of hexagonal-oriented structures of sputtered CdS and i-ZnO layers were noticed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.