Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
ALBERTSSON. Plasma insulin in response to enterostatin and effect of adrenalectomy in rats. Obes Res. 1996;4:513-519. Enterostatin has previously been reported to alter serum insulin and corticosterone levels after central administration of the peptide. The purpose of the present study was to investigate the effect of peripheral administration of enterostatin on insulin and corticosterone levels as well as the response of plasma insulin to enterostatin administration in adrenalectomized rats. Female Sprague-Dawley rats were given a bolus injection intravenously with enterostatin alone or together with glucose. Enterostatin increased basal plasma levels of insulin, but significantly inhibited the increase in plasma insulin stimulated by glucose. Plasma corticosterone levels were not altered after a single intravenous injection of enterostatin. In rats infused chronically with enterostatin, plasma insulin levels were significantly reduced and plasma corticosterone levels were increased. The daily food intake was lower in these rats, but there was no effect on body weight. After adrenalectomy, the responsiveness of plasma insulin to enterostatin infusion was completely abolished. Furthermore, adrenalectomy itself reduced basal plasma levels of insulin and increased plasma levels of endogenous enterostatin. These results suggest that peripheral enterostatin administration produces a similar effect as central infusion of the peptide, and that the glucocorticoid hormones are involved in the regulation of plasma insulin by enterostatin.
ALBERTSSON. Plasma insulin in response to enterostatin and effect of adrenalectomy in rats. Obes Res. 1996;4:513-519. Enterostatin has previously been reported to alter serum insulin and corticosterone levels after central administration of the peptide. The purpose of the present study was to investigate the effect of peripheral administration of enterostatin on insulin and corticosterone levels as well as the response of plasma insulin to enterostatin administration in adrenalectomized rats. Female Sprague-Dawley rats were given a bolus injection intravenously with enterostatin alone or together with glucose. Enterostatin increased basal plasma levels of insulin, but significantly inhibited the increase in plasma insulin stimulated by glucose. Plasma corticosterone levels were not altered after a single intravenous injection of enterostatin. In rats infused chronically with enterostatin, plasma insulin levels were significantly reduced and plasma corticosterone levels were increased. The daily food intake was lower in these rats, but there was no effect on body weight. After adrenalectomy, the responsiveness of plasma insulin to enterostatin infusion was completely abolished. Furthermore, adrenalectomy itself reduced basal plasma levels of insulin and increased plasma levels of endogenous enterostatin. These results suggest that peripheral enterostatin administration produces a similar effect as central infusion of the peptide, and that the glucocorticoid hormones are involved in the regulation of plasma insulin by enterostatin.
YORK. Enterostatin-a peptide regulating fat intake. Obes Res. 1997;5:360-372. A high fat intake, together with an inability to match lipid oxidation to fat intake, has been found to be correlated with obesity in humans. This review describes our current understanding of enterostatin, a peptide that selectively reduces fat intake. Enterostatin is formed in the intestine by the cleavage of secreted pancreatic procolipase, the remaining colipase serving as an obligatory cofactor for pancreatic lipase during fat digestion. Enterostatin is also produced in the gastric mucosa and the mucosal epithelia of the small intestine. Procolipase gene transcription and enterostatin release into the gastrointestinal lumen are increased by high-fat diets. After feeding, enterostatin appears in the lymph and circulation. Enterostatin will selectively inhibit fat intake during normal feeding and in experimental paradigms that involve dietary choice. Its anorectic effect has been demonstrated in a number of species. Both peripheral and central sites of action have been proposed. The peripheral mechanism involves an afferent vagal signaling pathway to hypothalamic centers. The central responses are mediated through a pathway that includes both serotonergic and opioidergic components. Chronically, enterostatin reduces fat intake, bodyweight, and body fat. This response may involve multiple metabolic effects of enterostatin, which include a reduction of insulin secretion, an increase in sympathetic drive to brown adipose tissue, and the stimulation of adrenal corticosteroid secretion. A possible pathophysiological role is suggested by studies that have linked low enterostatin production andor responsiveness to strains of rat that become obese and prefer dietary fat. Humans with obesity also exhibit a lower secretion of pancreatic procolipase after a test meal, compared with persons of normal weight.
In an attempt to search for novel biomarkers for monitoring diabetes prognosis, we examined the influence of the hypoglycemic fungal extracellular polysaccharides (EPS) on the differential change in pancreatic proteome and transcriptome in streptozotocin (STZ)-induced diabetic rats using 2-DE-based protein mapping and oligonucleotide microarray analysis. The 2-DE system separated more than 2000 individual spots, demonstrating that 34 proteins out of about 500 matched spots were differentially expressed. A total of 22 overexpressed and 12 underexpressed proteins in 2-DE map were observed (p<0.05) between the healthy and diabetic rats, of which 26 spots were identified by PMF analysis. Of these, significant down regulation of carbonyl reductase (Cbr), hydroxymethylglutaryl-CoA synthase (HMGCS), and putative human mitogen-activated protein kinase activator with WD repeats-binding protein (MAWDBP) in diabetic pancreas were reported for the first time in this study. When treated with EPS, all these four proteins were reverted to normal levels. The microarray analysis revealed that 96 out of 1272 genes were down- or up-regulated in the diabetic rats and the altered transcript levels of many of these genes were reversed after EPS treatment. In particular, ROS generation in rat islets was significantly increased after STZ treatment, thereafter EPS treatment was likely to play a preventive role in beta-cell destruction mediated by STZ. Taken together, EPS may act as a potent regulator of gene expression for a wide variety of genes in diabetic rats, particularly in antioxidative stress, insulin biosynthesis, and cell proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.