Background: Schistosomiasis, caused by infection with blood fluke schistosomes, is a neglected tropical disease of considerable importance in resource-poor communities throughout the developing world. In the absence of an immunoprophylactic vaccine and due to over-reliance on a single chemotherapy (praziquantel), schistosomiasis control is at risk should drug insensitive schistosomes develop. In this context, application of in silico virtual screening on validated schistosome targets has proven successful in the identification of novel small molecules with anti-schistosomal activity. Methods: Focusing on the Schistosoma mansoni histone methylation machinery, we herein have used RNA interference (RNAi), ELISA-mediated detection of H3K4 methylation, homology modelling and in silico virtual screening to identify a small collection of small molecules for anti-schistosomal testing. A combination of low to high-throughput whole organism assays were subsequently used to assess these compounds’ activities on miracidia to sporocyst transformation, schistosomula phenotype/motility metrics and adult worm motility/oviposition readouts. Results: RNAi-mediated knockdown of smp_138030/smmll-1 (encoding a histone methyltransferase, HMT) in adult worms (~60%) reduced parasite motility and egg production. Moreover, in silico docking of compounds into Smp_138030/SmMLL-1’s homology model highlighted competitive substrate pocket inhibitors, some of which demonstrated significant activity on miracidia, schistosomula and adult worm lifecycle stages together with variable effects on HepG2 cells. Particularly, the effect of compounds containing a 6-(piperazin-1-yl)-1,3,5-triazine core on adult schistosomes recapitulated the results of the smp_138030/smmll-1 RNAi screens. Conclusions: The biological data and the structure-activity relationship presented in this study define the 6-(piperazin-1-yl)-1,3,5-triazine core as a promising starting point in ongoing efforts to develop new urgently needed schistosomicides.