The concept of low impact development (LID) plays a crucial role in rainstorm management and non-point source pollution prevention and control. Sorting and summarizing related research through the knowledge map can objectively present the disciplinary structure, research focus, and research hotspots of the LID research. Based on 2103 LID pieces of literature in Chinese and English included in the web of science (WOS) database and China’s integrated knowledge resources system (CNKI) database from 2004 to 2021, this paper aims to perform statistical analysis from three aspects: bibliometrics, keyword hotspot co-occurrence and clustering, and literature co-citation clustering. The obtained results reveal that research on LID-based issues maintains a high degree of enthusiasm in China and abroad, but their corresponding focuses are dissimilar. Foreign research essentially focuses on the environmental field with frequent interdisciplinary phenomena, combining the triple goals of water quality improvement, runoff reduction, and multi-functional expansion, and is committed to solving the impact of uncertain factors on urban stormwater management in extreme climates. Chinese research is mostly aimed at unlocking practical engineering problems, which also leads to the majority of research works in the field of building science and engineering. This is mainly due to a series of water-related problems caused by the change in land use types in China. The researchers have determined the type, quantity, location, and combination of the optimal LID measures by establishing appropriate models, using optimization algorithms, and developing multi-level analysis methods. Although the multi-dimensional results of LID in recent years have greatly expanded the framework paradigm, most of the conducted research works are still biased towards the micro-scale. The present hotspot research considers how to make a macroscopic overall layout and efficiently cooperate with the pipelines network, rivers, and lakes systems to unlock the problems pertinent to urban rainwater and non-point source pollution.