Link prediction is a crucial problem in the analysis of graph-structured data, and graph neural networks (GNNs) have proven to be effective in addressing this problem. However, the computational and temporal costs associated with large-scale graphs remain a concern. This study introduces a novel method for link prediction called Sparse Subgraph Prediction Based on Adaptive Attention (SSP-AA). The method generates sparse subgraphs and utilizes Graph SAmple and aggreGatE (GraphSAGE) for prediction, aiming to reduce computation and time costs while providing a foundation for future exploration of large-scale graphs. Certain key issues in GraphSAGE are addressed by integrating an adaptive attention mechanism and a jumping knowledge module into the model. To address the issue of adaptive weight distribution in GraphSAGE, an aggregation function is employed, which is based on the attention mechanism. This modification enables the model to distribute weights adaptively among neighboring nodes, significantly improving its ability to capture node relationships. Furthermore, to tackle the common issue of over-smoothing in GNNs, a jumping knowledge module is integrated, enabling information sharing across different layers and providing the model with the flexibility to select the appropriate representation depth based on the specific situation. By enhancing the quality of node representations, SSP-AA further boosts the performance of GraphSAGE in various prediction tasks involving graph-structured data.