Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
REPORT DATE (DD-MM-YYYY)
ARL-RP-118
SPONSOR/MONITOR'S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
SPONSOR/MONITOR'S REPORT NUMBER(S)
DISTRIBUTION/AVAILABILITY STATEMENTApproved for public release; distribution is unlimited.
SUPPLEMENTARY NOTESA reprint from the
ABSTRACTDeformation mappings are considered that correspond to the motions of lattice defects, elastic stretch and rotation of the lattice, and initial defect distributions. Intermediate (i.e., relaxed) configuration spaces associated with these deformation maps are identified and then classified from the differential-geometric point of view. A fundamental issue is the proper selection of coordinate systems and metric tensors in these configurations when such configurations are classified as anholonomic. The particular choice of a global, external Cartesian coordinate system and corresponding covariant identity tensor as a metric on an intermediate configuration space is shown to be a constitutive assumption often made regardless of the existence of geometrically necessary crystal defects associated with the anholonomicity (i.e., the non-Euclidean nature) of the space. Since the metric tensor on the anholonomic configuration emerges necessarily in the definitions of scalar products, certain transpose maps, tensorial symmetry operations, and Jacobian invariants, its selection should not be trivialized. Several alternative (i.e., non-Euclidean) representations proposed in the literature for the metric tensor on anholonomic spaces are critically examined.
SUBJECT TERMS
AbstractDeformation mappings are considered that correspond to the motions of lattice defects, elastic stretch and rotation of the lattice, and initial defect distributions. Intermediate (i.e., relaxed) conÿguration spaces associated with these deformation maps are identiÿed and then classiÿed from the di erential-geometric point of view. A fundamental issue is the proper selection of coordinate systems and metric tensors in these conÿgurations when such conÿgurations are classiÿed as anholonomic. The particular choice of a global, external Cartesian coordinate system and co...