In this study, mass minimization of a simple double-acting hydraulic cylinder has been studied using The Bees Algorithm (BA) for a specific force and known material, considering the buckling and pressure constraints. A Hydraulic cylinder is a hydraulic actuator that creates linear movement by converting hydraulic energy back to a mechanical movement. Hydraulic-driven working machines are widespread in the industry today. Hydraulic cylinders are used in mobile applications such as container lifting devices, excavators, dump trucks, loaders, graders and dozers. Weight reduction in these cylinders plays a fundamental role in the performance of the machine in terms of lifting capacity, speed, costing, etc. The Bees Algorithm is a metaheuristic algorithm that mimics the natural foraging behavior of honey bees to find the optimum solutions. The advantages over other algorithms are its ability to search both locally and globally and being applicable for several optimization problems with the chance to be integrated with other algorithms. In this study, it is also aimed to determine the optimal parameters of the bees algorithm for minimum computation cost.