Background As the number and type of cancer treatments available rises and patients live with the consequences of their disease and treatments for longer, understanding preferences for cancer care can help inform decisions about optimal treatment development, access, and care provision. Discrete choice experiments (DCEs) are commonly used as a tool to elicit stakeholder preferences; however, their implementation in oncology may be challenging if burdensome trade-offs (e.g. length of life versus quality of life) are involved and/or target populations are small. Objectives The aim of this review was to characterise DCEs relating to cancer treatments that were conducted between 1990 and March 2020. Data Sources EMBASE, MEDLINE, and the Cochrane Database of Systematic Reviews were searched for relevant studies. Study Eligibility Criteria Studies were included if they implemented a DCE and reported outcomes of interest (i.e. quantitative outputs on participants' preferences for cancer treatments), but were excluded if they were not focused on pharmacological, radiological or surgical treatments (e.g. cancer screening or counselling services), were non-English, or were a secondary analysis of an included study. Analysis Methods Analysis followed a narrative synthesis, and quantitative data were summarised using descriptive statistics, including rankings of attribute importance. Result Seventy-nine studies were included in the review. The number of published DCEs relating to oncology grew over the review period. Studies were conducted in a range of indications (n = 19), most commonly breast (n =10, 13%) and prostate (n = 9, 11%) cancer, and most studies elicited preferences of patients (n = 59, 75%). Across reviewed studies, survival attributes were commonly ranked as most important, with overall survival (OS) and progression-free survival (PFS) ranked most important in 58% and 28% of models, respectively. Preferences varied between stakeholder groups, with patients and clinicians placing greater importance on survival outcomes, and general population samples valuing health-related quality of life (HRQoL). Despite the emphasis of guidelines on the importance of using qualitative research to inform attribute selection and DCE designs, reporting on instrument development was mixed. Limitations No formal assessment of bias was conducted, with the scope of the paper instead providing a descriptive characterisation. The review only included DCEs relating to cancer treatments, and no insight is provided into other health technologies such as cancer screening. Only DCEs were included. Conclusions and Implications Although there was variation in attribute importance between responder types, survival attributes were consistently ranked as important by both patients and clinicians. Observed challenges included the risk of attribute dominance for survival outcomes, limited sample sizes in some indications, and a lack of reporting about instrument development processes. Protocol Registration PROSPERO 2020 CRD42020184232.