Collective decision making is the ability of individuals to jointly make a decision without any centralized leadership, but only relying on local interactions. A special case is represented by the best-of-n problem, whereby the swarm has to select the best option among a set of n discrete alternatives. In this paper, we perform a thorough study of the best-of-n problem in dynamic environments, in the presence of two options (n = 2). Site qualities can be directly measured by agents, and we introduce abrupt changes to these qualities. We introduce two adaptation mechanisms to deal with dynamic site qualities: stubborn agents and spontaneous opinion switching. Using both computer simulations and ordinary differential equation models, we show that: (i) The mere presence of the stubborn agents is enough to achieve adaptability, but increasing its number has detrimental effects on the performance; (ii) the system adaptation increases with increasing swarm size, while it does not depend on agents' density, unless this is below a critical threshold; (iii) the spontaneous switching mechanism can also be used to achieve adaptability to dynamic environments, and its key parameter, the probability of switching, can be used to regulate the trade-off between accuracy and speed of adaptation. Keywords Dynamic environments • Collective decision making • Best-of-n • Swarm robotics • Complex adaptive systems B Eliseo Ferrante