Swarm robotics is an approach to collective robotics that takes inspiration from the self-organized behaviors of social animals. Through simple rules and local interactions, swarm robotics aims at designing robust, scalable, and flexible collective behaviors for the coordination of large numbers of robots. In this paper, we analyze the literature from the point of view of swarm engineering: we focus mainly on ideas and concepts that contribute to the advancement of swarm robotics as an engineering field and that could be relevant to tackle real-world applications. Swarm engineering is an emerging discipline that aims at defining systematic and well founded procedures for modeling, designing, realizing, verifying, validating, operating, and maintaining a swarm robotics system. We propose two taxonomies: in the first taxonomy, we classify works that deal with design and analysis methods; in the second taxonomy, we classify works according to the collective behavior studied. We conclude with a discussion of the current limits of swarm robotics as an engineering discipline and with suggestions for future research directions.
We present a novel multi-robot simulator named ARGoS. ARGoS is designed to simulate complex experiments involving large swarms of robots of different types. ARGoS is the first multi-robot simulator that is at the same time both efficient (fast performance with many robots) and flexible (highly customizable for specific experiments). Novel design choices in ARGoS have enabled this breakthrough. First, in ARGoS, it is possible to partition the simulated space into multiple sub-spaces, managed by different physics engines
A Novel Concept for the Study of Heterogeneous Robotic Swarms warm robotics systems are characterized by decentralized control, limited communication between robots, use of local information, and emergence of global behavior. Such systems have shown their potential for flexibility and robustness [1]-[3]. However, existing swarm robotics systems are by and large still limited to displaying simple proof-of-concept behaviors under laboratory conditions. It is our contention that one of the factors holding back swarm robotics research is the almost universal insistence on homogeneous system components. We believe that swarm robotics designers must embrace heterogeneity if they ever want swarm robotics systems to approach the complexity required of real-world systems. To date, swarm robotics systems have almost exclusively comprised physically and behaviorally undifferentiated agents. This design decision has its roots in ethological models of self-organizing natural systems. These models serve as inspiration for swarm robotics system designers, but are often highly abstract simplifications of natural systems and, to date, have largely assumed homogeneous agents. Selected dynamics of the systems under study are shown to emerge from the interactions of identical system components, ignoring the heterogeneities (physical, spatial, functional, and informational) that one can find in almost any natural system. The field of swarm robotics currently lacks methods and tools with which to study and leverage the heterogeneity that is present in natural systems. To remedy this deficiency, we propose swarmanoid, an innovative swarm robotics system composed of three different robot types with complementary skills: foot-bots are small autonomous robots specialized in moving on both even and uneven terrains, capable of self-assembling and of transporting objects or other robots; hand-bots are autonomous robots capable of climbing some vertical surfaces and manipulating small objects; and eye-bots are autonomous flying robots that can attach to an indoor ceiling, capable of analyzing the environment from a privileged position to S
Achieving fast and accurate collective decisions with a large number of simple agents without relying on a central planning unit or on global communication is essential for developing complex collective behaviors. In this paper, we investigate the speed versus accuracy trade-off in collective decision-making in the context of a binary discrimination problem-i.e., how a swarm can collectively determine the best of two options. We describe a novel, fully distributed collective decision-making strategy that only requires agents with minimal capabilities and is faster than previous approaches. We evaluate our strategy experimentally, using a swarm of 100 Kilobots, and we study it theoretically, using both continuum and finite-size models. We find that the main factor affecting the speed versus accuracy trade-off of our strategy is the agents neighborhood size-i.e., the number of agents with whom the current opinion of each agent is shared. The proposed strategy and the associated theoretical framework can be used to design swarms that take collective decisions at a given level of speed and/or accuracy. Keywords collective decision-making • swarm robotics • majority rule • voter model • self-organization • ordinary differential equations • chemical reaction network • Gillespie algorithm • Kilobot
The ability to collectively choose the best among a finite set of alternatives is a fundamental cognitive skill for robot swarms. In this paper, we propose a formal definition of the best-of-n problem and a taxonomy that details its possible variants. Based on this taxonomy, we analyze the swarm robotics literature focusing on the decision-making problem dealt with by the swarm. We find that, so far, the literature has primarily focused on certain variants of the best-of-n problem, while other variants have been the subject of only a few isolated studies. Additionally, we consider a second taxonomy about the design methodologies used to develop collective decision-making strategies. Based on this second taxonomy, we provide an in-depth survey of the literature that details the strategies proposed so far and discusses the advantages and disadvantages of current design methodologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.