Swarm robotics is an approach to collective robotics that takes inspiration from the self-organized behaviors of social animals. Through simple rules and local interactions, swarm robotics aims at designing robust, scalable, and flexible collective behaviors for the coordination of large numbers of robots. In this paper, we analyze the literature from the point of view of swarm engineering: we focus mainly on ideas and concepts that contribute to the advancement of swarm robotics as an engineering field and that could be relevant to tackle real-world applications. Swarm engineering is an emerging discipline that aims at defining systematic and well founded procedures for modeling, designing, realizing, verifying, validating, operating, and maintaining a swarm robotics system. We propose two taxonomies: in the first taxonomy, we classify works that deal with design and analysis methods; in the second taxonomy, we classify works according to the collective behavior studied. We conclude with a discussion of the current limits of swarm robotics as an engineering discipline and with suggestions for future research directions.
Event-based cameras have recently drawn the attention of the Computer Vision community thanks to their advantages in terms of high temporal resolution, low power consumption and high dynamic range, compared to traditional frame-based cameras. These properties make event-based cameras an ideal choice for autonomous vehicles, robot navigation or UAV vision, among others. However, the accuracy of event-based object classification algorithms, which is of crucial importance for any reliable system working in real-world conditions, is still far behind their framebased counterparts. Two main reasons for this performance gap are: 1. The lack of effective low-level representations and architectures for event-based object classification and 2. The absence of large real-world event-based datasets. In this paper we address both problems. First, we introduce a novel event-based feature representation together with a new machine learning architecture. Compared to previous approaches, we use local memory units to efficiently leverage past temporal information and build a robust eventbased representation. Second, we release the first large real-world event-based dataset for object classification. We compare our method to the state-of-the-art with extensive experiments, showing better classification performance and real-time computation.
We present a novel multi-robot simulator named ARGoS. ARGoS is designed to simulate complex experiments involving large swarms of robots of different types. ARGoS is the first multi-robot simulator that is at the same time both efficient (fast performance with many robots) and flexible (highly customizable for specific experiments). Novel design choices in ARGoS have enabled this breakthrough. First, in ARGoS, it is possible to partition the simulated space into multiple sub-spaces, managed by different physics engines
A Novel Concept for the Study of Heterogeneous Robotic Swarms warm robotics systems are characterized by decentralized control, limited communication between robots, use of local information, and emergence of global behavior. Such systems have shown their potential for flexibility and robustness [1]-[3]. However, existing swarm robotics systems are by and large still limited to displaying simple proof-of-concept behaviors under laboratory conditions. It is our contention that one of the factors holding back swarm robotics research is the almost universal insistence on homogeneous system components. We believe that swarm robotics designers must embrace heterogeneity if they ever want swarm robotics systems to approach the complexity required of real-world systems. To date, swarm robotics systems have almost exclusively comprised physically and behaviorally undifferentiated agents. This design decision has its roots in ethological models of self-organizing natural systems. These models serve as inspiration for swarm robotics system designers, but are often highly abstract simplifications of natural systems and, to date, have largely assumed homogeneous agents. Selected dynamics of the systems under study are shown to emerge from the interactions of identical system components, ignoring the heterogeneities (physical, spatial, functional, and informational) that one can find in almost any natural system. The field of swarm robotics currently lacks methods and tools with which to study and leverage the heterogeneity that is present in natural systems. To remedy this deficiency, we propose swarmanoid, an innovative swarm robotics system composed of three different robot types with complementary skills: foot-bots are small autonomous robots specialized in moving on both even and uneven terrains, capable of self-assembling and of transporting objects or other robots; hand-bots are autonomous robots capable of climbing some vertical surfaces and manipulating small objects; and eye-bots are autonomous flying robots that can attach to an indoor ceiling, capable of analyzing the environment from a privileged position to S
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.