We combine resolvent-mode decomposition with techniques from convex optimization to optimally approximate velocity spectra in a turbulent channel. The velocity is expressed as a weighted sum of resolvent modes that are dynamically significant, non-empirical, and scalable with Reynolds number. To optimally represent direct numerical simulations (DNS) data at friction Reynolds number 2003, we determine the weights of resolvent modes as the solution of a convex optimization problem. Using only 12 modes per wall-parallel wavenumber pair and temporal frequency, we obtain close agreement with DNS-spectra, reducing the wall-normal and temporal resolutions used in the simulation by three orders of magnitude.