The memristor has been theoretically investigated as one of the fundamental electrical elements by Pr. Leon Chua in 1971. Meanwhile, its electrical characteristics are not yet fully understood. The nonlinear characteristics and the ability to examine large-scale amounts of storing data of this device reveal an interesting development in emerging electronic systems. Research on memristor modeling based on SPICE tools has grown rapidly. This leads us to study the behavior of such devices. Our aim is to simulate different types of memristor behavior. The adjustment of the model is based on the implementation of several parameters, which enables the switching of this device. In this chapter, we prove the flexibility and the correlation of memristor model with different memristive characterization data, by applying different voltage bias, sinusoidal and with a repetitive sweeping. Moreover, we demonstrate the memristor behavior as four types of switching. This includes bipolar switching, unipolar switching, bipolar switching with forgetting effect, and a reversible process between bipolar and unipolar switching. In order to validate this study, we compare our simulation results with experimental data and we prove a good agreement. The SPICE model used in our simulations shows a special advantage for its flexibility and simplicity.