2014
DOI: 10.1017/fmp.2014.1
|View full text |Cite
|
Sign up to set email alerts
|

The Breuil–mézard Conjecture for Potentially Barsotti–tate Representations

Abstract: We prove the Breuil-Mézard conjecture for 2-dimensional potentially Barsotti-Tate representations of the absolute Galois group G K , K a finite extension of Qp, for any p > 2 (up to the question of determining precise values for the multiplicities that occur). In the case that K/Qp is unramified, we also determine most of the multiplicities. We then apply these results to the weight part of Serre's conjecture, proving a variety of results including the Buzzard-Diamond-Jarvis conjecture.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

3
224
0
11

Year Published

2014
2014
2024
2024

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 91 publications
(238 citation statements)
references
References 36 publications
3
224
0
11
Order By: Relevance
“…The map cyc also appears in the l = p situation when working with potentially semistable (rather than potentially crystalline) deformation rings. Our proof of the main theorem is 'global', making use of the methods of [GK14] and [EG14]. We use the Taylor-Wiles-Kisin patching method to produce an exact functor θ −→ H ∞ (θ) from the category of finitely generated O-modules with a smooth GL n (O F )-action to the category of finitely generated R (ρ)-modules, such that the support of H ∞ (θ) -counted with multiplicity -is cyc(θ).…”
Section: Introductionmentioning
confidence: 99%
“…The map cyc also appears in the l = p situation when working with potentially semistable (rather than potentially crystalline) deformation rings. Our proof of the main theorem is 'global', making use of the methods of [GK14] and [EG14]. We use the Taylor-Wiles-Kisin patching method to produce an exact functor θ −→ H ∞ (θ) from the category of finitely generated O-modules with a smooth GL n (O F )-action to the category of finitely generated R (ρ)-modules, such that the support of H ∞ (θ) -counted with multiplicity -is cyc(θ).…”
Section: Introductionmentioning
confidence: 99%
“…Cela se démontre en utilisant les techniques de multiplicité un issues de la méthode de Taylor-Wiles comme inauguré par Fujiwara ( [23]) et l'un d'entre nous ( [16] n'a qu'un seul de ses constituants qui apparaît dans ce GL 2 (O Fv )-socle :à savoir le poids de Serre ⊗ σ (Sym rv,σ F p 2 ) σ ci-dessus. Cela se déduit par exemple directement de [25] et d'un calcul facile (mais peut aussi se démontrer de manière plusélémentaire sans utiliser [25]). Une fois ces deux ingrédients disponibles, l'existence de x(J) se ramène essentiellementà de la théorie des représentations (cf.…”
Section: Introductionunclassified
“…Les auteurs remercient Toby Gee pour leur avoir signalé les résultats récents de [2] et [25] On désigne par L une extension finie de Q p non ramifiée de degré…”
Section: Introductionunclassified
See 2 more Smart Citations