Taraxacum kok-saghyz (TKS) rubber is considered the most ideal alternative source of natural rubber (NR). Extracting rubber from TKS with high quality, low cost, and low pollution is the basis of commercial development. The TKS roots were subjected to morphological observation and detailed compositional analysis. Scanning electron microscopy (SEM) images confirm that rubber filaments are physically entangled with plant tissues due to differences in molecular polarity. Compared with the traditional solvent TKS rubber extraction process, a new rubber extraction process developed in this study, namely, the microbial extraction (″ME″) process, is less harmful to the environment and lower in cost. The ″ME″ process is divided into three steps: dilute acid pretreatment process, enzyme degradation process, and fermentation process. After each step is completed, the purity of TKS rubber will gradually increase from 84.8% to 93.8 to 95.5%. The TKS rubber finally obtained fully meets the requirements of the traditional rubber industry, especially the tire industry. Besides, the yield of biofuel ethanol, a by-product of cellulose fermentation, reaches 2.05 g/100 g of TKS roots (dry weight), which can effectively reduce the production cost of TKS rubber. In the rubber extraction process, microorganisms have little effect on the quality of TKS rubber. The results show that the molecular weight and chemical structure of TKS rubber is very close to NR, so the ″ME″ process can be used as a new method for large-scale extraction of TKS rubber.