Reactive oxygen species (ROS) generated during inflammation are believed to play critical roles in various ocular diseases. However, the underlying mechanisms remain poorly understood. We investigated if pro-inflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin-1β (IL-1β), and interferon-γ (IFN-γ), induce ROS in human retinal pigment epithelial (RPE) cells. TNF-α, IL-1β and IFN-γ increased both intracellular and extracellular ROS production in a time-and dosedependent manner. Thenoyltrifluoroacetone (TTFA), an inhibitor of mitochondrial respiratory chain, blocked TNF-α-and IFN-γ-, but not IL-1β-induced ROS, whereas other two mitochondrial respiratory chain inhibitors, rotenone and antimycin A, had no effect. NADPH oxidase inhibitor (diphenylene iodinium) abolished the ROS production induced by IL-1β or IFN-γ, but not by TNF-α, whereas 6-aminonicotinamide (6AN), an inhibitor of the hexose monophosphate shunt (HMS), had no significant effects on the ROS induced by all three cytokines. ROS scavengers, pyrrolidinedithiocarbamate (PDTC) and N-acetyl-cysteine (NAC), reduced the levels of ROS induced by TNF-α, IL-1β and IFN-γ (P < 0.05). Collectively, these results demonstrate that TNF-α, IL-1β and IFN-γ increase mitochondrial-and NADPH oxidase-generated ROS in human RPE cells.