The matrix representations of hypergraphs have been defined via hypermatrices initially. In recent studies, the Laplacian matrix of hypergraphs, a generalization of the Laplacian matrix, has been introduced. In this article, based on this definition, we derive bounds depending pair-degree, maximum degree, and the first Zagreb index for the greatest Laplacian eigenvalue and Laplacian energy of r-uniform hypergraphs and r-uniform regular hypergraphs. As a result of these bounds, Nordhaus–Gaddum type bounds are obtained for the Laplacian energy.