A superconducting-qantum-interference-device (SQUID) nondestructive evaluation (NDE) system using a small room-temperature probe is developed for active scanning rather than for a massive movement occurring in a traditional SQUID NDE system. The small room-temperature probe is composed of a quadruple excitation coil and a double D-shaped pickup coil. It is connected to the input coil surrounding a high-T(c) rf SQUID, immersed in liquid nitrogen, and shielded by a shielding can. Beyond the NDE function, the SQUID NDE scheme has spatial recognition functions, including the detection of the orientation and depth of a narrow line crack using different parameters, and the scanning of images of large objects with arbitrary shapes. Furthermore, the spatial sensitivity, limited by the size of the probe, reaches up to only 7 mu m in the aspect of crack widths and 1 mm in the aspect of spatial intervals for precision NDE on a printed circuit board. (C) 2009 The Japan Society of Applied Physic