AP-2 complex is widely distributed in eukaryotes in the form of heterotetramer that functions in the uptake of membrane proteins during mammalian/plant clathrin-mediated endocytosis. However, its biological function remains mysterious in pathogenic fungi. In this study, the wheat scab fungus, Fusarium graminearum, was used to characterise the biological function of the AP-2 complex. Our study shows that FgAP-2 complex plays a critical role in the maintenance of hyphal polarity.Lack of any subunit (FgAP2 α , FgAP2 β , FgAP2 σ , and FgAP2 mu ) of the FgAP-2 complex significantly affects the fungal vegetative growth, conidial morphology, and germination. Remarkably, FgAP-2 complex is important for the fungal pathogenicity, especially during colonisation and extension after infecting the host. The FgAP-2 complex is expressed ubiquitously at all developmental stages but having more concentrated protein distribution at the subapical collar and septa in young growing hyphae. Although FgAP-2 complex displays similar dynamic behaviour to the actin patch components and accumulates at endocytic sites, it is dispensable for general endocytosis. We further demonstrated that FgAP-2 complex is required for polar localisation of the lipid flippases FgDnfA and FgDnfB, which led to the proposal that FgAP-2 functions as a cargo-specific adaptor that promotes polar growth and colonising ability of F. graminearum.