Innate immunity against pathogen infection is an evolutionarily conserved process among multicellular organisms. Arabidopsis SNC1 encodes a Resistance protein that combines attributes of multiple mammalian pattern recognition receptors. Utilizing snc1 as an autoimmune model, we identified a discrete protein complex containing at least three members-MOS4 (Modifier Of snc1, 4), AtCDC5, and PRL1 (Pleiotropic Regulatory Locus 1)-that are all essential for plant innate immunity. AtCDC5 has DNA-binding activity, suggesting that this complex probably regulates defense responses through transcriptional control. Since the complex components along with their interactions are highly conserved from fission yeast to Arabidopsis and human, they may also have a yet-to-be-identified function in mammalian innate immunity.[Keywords: Innate immunity; Arabidopsis; MOS4; PRL1; AtCDC5; NTC; MAC] Supplemental material is available at http://www.genesdev.org.
SummaryFusarium head blight (FHB) and Fusarium seedling blight (FSB) of wheat, caused by Fusarium pathogens, are devastating diseases worldwide. We report the expression of RNA interference (RNAi) sequences derived from an essential Fusarium graminearum (Fg) virulence gene, chitin synthase (Chs) 3b, as a method to enhance resistance of wheat plants to fungal pathogens. Deletion of Chs3b was lethal to Fg; disruption of the other Chs gene family members generated knockout mutants with diverse impacts on Fg. Comparative expression analyses revealed that among the Chs gene family members, Chs3b had the highest expression levels during Fg colonization of wheat. Three hairpin RNAi constructs corresponding to the different regions of Chs3b were found to silence Chs3b in transgenic Fg strains. Co-expression of these three RNAi constructs in two independent elite wheat cultivar transgenic lines conferred high levels of stable, consistent resistance (combined type I and II resistance) to both FHB and FSB throughout the T 3 to T 5 generations. Confocal microscopy revealed profoundly restricted mycelia in Fginfected transgenic wheat plants. Presence of the three specific short interfering RNAs in transgenic wheat plants was confirmed by Northern blotting, and these RNAs efficiently downregulated Chs3b in the colonizing Fusarium pathogens on wheat seedlings and spikes. Our results demonstrate that host-induced gene silencing of an essential fungal chitin synthase gene is an effective strategy for enhancing resistance in crop plants under field test conditions.
The bladder, the largest smooth-muscle organ in the human body, is responsible for urine storage and micturition. P63, a homolog of the p53 tumor-suppressor gene, is essential for the development of all stratified epithelia, including the bladder urothelium. The N-terminal truncated isoform of p63, ⌬Np63, is known to have anti-apoptotic characteristics. We have established that ⌬Np63 is not only the predominant isoform expressed throughout the bladder, but is also preferentially expressed in the ventral bladder urothelium during early development. We observed a host of ventral defects in p63 -/-embryos, including the absence of the abdominal and ventral bladder walls. This number of ventral defects is identical to bladder exstrophy, a congenital anomaly exhibited in human neonates. In the absence of p63, the ventral urothelium was neither committed nor differentiated, whereas the dorsal urothelium was both committed and differentiated. Furthermore, in p63 -/-bladders, apoptosis in the ventral urothelium was significantly increased. This was accompanied by the upregulation of mitochondrial apoptotic mediators Bax and Apaf1, and concurrent upregulation of p53. Overexpression of ⌬Np63␥ and ⌬Np63 in p63 -/-bladder primary cell cultures resulted in a rescue, evidenced by significantly reduced expressions of Bax and Apaf1. We conclude that ⌬Np63 plays a crucial anti-apoptotic role in normal bladder development.
HighlightCabZIP63, indirectly activated by CaWRKY40, positively modulates transcription of CabZIP63 and CaWRKY40, enhances the binding of CaWRKY40 to its target promoters, and, therefore, increases resistance to Ralstonia solanacearum and thermotolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.