2009
DOI: 10.1088/1751-8113/43/4/045203
|View full text |Cite
|
Sign up to set email alerts
|

The classical basis for the κ-Poincaré Hopf algebra and doubly special relativity theories

Abstract: Several issues concerning quantum κ−Poincaré algebra are discussed and reconsidered here. We propose two different formulations of κ−Poincaré quantum algebra. Firstly we present a complete Hopf algebra formulae of κ−Poincaré in classical Poincaré basis. Further by adding one extra generator, which modifies the classical structure of Poincaré algebra, we eliminate non polynomial functions in the κ− parameter. Hilbert space representations of such algebras make Doubly Special Relativity (DSR) similar to the Stue… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
91
0
1

Year Published

2011
2011
2017
2017

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 74 publications
(94 citation statements)
references
References 65 publications
2
91
0
1
Order By: Relevance
“…The above reminds one of some formulas from [39]. This enables us to introduce the new system of generators…”
Section: The Orthogonal D = 1 + ( D − 1) Decomposition Versus the Majmentioning
confidence: 94%
See 2 more Smart Citations
“…The above reminds one of some formulas from [39]. This enables us to introduce the new system of generators…”
Section: The Orthogonal D = 1 + ( D − 1) Decomposition Versus the Majmentioning
confidence: 94%
“…In order to preserve a compact form for the formulas (5)- (6) we have also introduced the following notation (extending our previous notation from [39]):…”
Section: Unified Description For κ-Deformationsmentioning
confidence: 99%
See 1 more Smart Citation
“…In particular one can choose F µ ( p) in a way leading to classical Poincaré algebra in algebraic sector of κ-deformed Poincaré algebra [33]- [35]. In such a way we get more complicated nonabelian formulae for the composition law of fourmomenta, which unfortunately are not endowed with physical interpretation.…”
Section: Antipodementioning
confidence: 99%
“…Позднее мы на-помним θ-твистованную алгебру Пуанкаре [19], [20]. В завершающей части мы также рассмотрим κ-деформированный дубль Гейзенберга алгебры Пуанкаре [2], но в клас-сическом базисе [21], а не в используемом обычно базисе би-смеш-произведения.…”
Section: модули смеш-произведения и дубли гейзенбергаunclassified