The entrainment of fine particles in underflow of a grinding-classification hydrocyclone can cause ore overgrinding, which will lead to reductions in both metal recovery and ball mill throughput. To address this problem, this paper proposed a W-shaped hydrocyclone that can effectively reduce underflow fine particle entrainment. Experimental tests and numerical simulations were employed to deeply investigate overflow pipe diameter influence on the separation performance and internal flow field of W-shaped hydrocyclones. The effects of overflow pipe diameter on air core shape, velocity field, pressure field, and separation performance were studied. The results revealed that as the diameter of the overflow pipe increased, air core gradually stabilized, and air core diameter gradually increased. The diameter of stabilized air core was approximately 45% to 55% of overflow pipe diameter. As overflow pipe diameter increased, hydrocyclone pressure drop decreased, energy consumption was reduced, the tangential velocity decreased, outer vortex axial velocity did not change significantly, and inner vortex axial velocity gradually increased. At the same time, zero-velocity points gradually moved outward, and the inner vortex region expanded. By the increase of overflow pipe diameter, both the underflow yield and split ratio gradually decreased, the coarse particle content in the overflow product increased, and the fine particle content in the underflow product gradually decreased.