With limited infection control practices in overcrowded Bangladeshi hospitals, surfaces may play an important role in the transmission of respiratory pathogens in hospital wards and pose a serious risk of infection for patients, health care workers, caregivers and visitors. In this study, we aimed to identify if surfaces near hospitalized patients with respiratory infections were contaminated with respiratory pathogens and to identify which surfaces were most commonly contaminated. Between September-November 2013, we collected respiratory (nasopharyngeal and oropharyngeal) swabs from patients hospitalized with respiratory illness in adult medicine and paediatric medicine wards at two public tertiary care hospitals in Bangladesh. We collected surface swabs from up to five surfaces near each case-patient including: the wall, bed rail, bed sheet, clinical file, and multipurpose towel used for care giving purposes. We tested swabs using real-time multiplex PCR for 19 viral and 12 bacterial pathogens. Case-patients with at least one pathogen detected had corresponding surface swabs tested for those same pathogens. Of 104 patients tested, 79 had a laboratory-confirmed respiratory pathogen. Of the 287 swabs collected from surfaces near these patients, 133 (46%) had evidence of contamination with at least one pathogen. The most commonly contaminated surfaces were the bed sheet and the towel. Sixty-two percent of patients with a laboratory-confirmed respiratory pathgen (49/79) had detectable viral or bacterial nucleic acid on at least one surface. Klebsiella pneumoniae was the most frequently detected pathogen on both respiratory swabs (32%, 33/104) and on surfaces near patients positive for this organism (97%, 32/33). Surfaces near patients hospitalized with respiratory infections were frequently contaminated by pathogens, with Klebsiella pneumoniae being most common, highlighting the potential for transmission of respiratory pathogens via surfaces. Efforts to introduce routine cleaning in wards may be a feasible strategy to improve infection control, given that severe space constraints prohibit cohorting patients with respiratory illness.