We present the cosmological analysis of the configuration-space anisotropic clustering in the completed Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) DR16 galaxy sample. This sample consists of luminous red galaxies (LRGs) spanning the redshift range 0.6 < z < 1, at an effective redshift of zeff = 0.698. It combines 174 816 eBOSS LRGs and 202 642 BOSS CMASS galaxies. We extract and model the baryon acoustic oscillations (BAO) and redshift-space distortions (RSD) features from the galaxy two-point correlation function to infer geometrical and dynamical cosmological constraints. The adopted methodology is extensively tested on a set of realistic simulations. The correlations between the inferred parameters from the BAO and full-shape correlation function analyses are estimated. This allows us to derive joint constraints on the three cosmological parameter combinations: DM(z)/rd, DH(z)/rd and fσ8(z), where DM is the comoving angular diameter distance, DH is Hubble distance, rd is the comoving BAO scale, f is the linear growth rate of structure, and σ8 is the amplitude of linear matter perturbations. After combining the results with those from the parallel power spectrum analysis of Gil-Marin et al. 2020, we obtain the constraints: DM/rd = 17.65 ± 0.30, DH/rd = 19.77 ± 0.47, fσ8 = 0.473 ± 0.044. These measurements are consistent with a flat ΛCDM model with standard gravity.