“…{(0, 0), (0, 1), (0, 11), (0, 6)}, {(0, 0), (1, 1), (2,11), (0, 6)}, {(0, 0), (1,3), (2,9), (0, 6)}, {(0, 0), (1,5), (2,7), (0, 6)}, {(0, 0), (0, 1), (0, 3), (0, 4)}, {(0, 0), (0, 1), (0, 5), (0, 8)}, {(0, 0), (0, 1), (1, 0), (1, 1)}, {(0, 0), (0, 1), (1,2), (1, 3)}, {(0, 0), (0, 1), (1,4), (1,5)}, {(0, 0), (0, 1), (1,6), (1, 7)}, {(0, 0), (0, 1), (1,8), (1,9)}, {(0, 0), (0, 1), (1,10), (1,11)}, {(0, 0), (0, 2), (0, 5), (1, 0)}, {(0, 0), (0, 10), (0, 7), (2, 0)}, {(0, 0), (0, 2), (0, 6), (1, 2)}, {(0, 0), (0, 10), (0, 6), (2, 10)}, {(0, 0), (0, 2), (1, 1), (1, 3)}, {(0, 0), (0, 2), (1,4), (1,6)}, {(0, 0), (0, 2), (1,5), (1,7)}, {(0, 0), (0, 2), (1,8), (1,10)}, {(0, 0), (0, 2), (1,9), (1,11) Proof Start with a strictly Z m × Z 2 ǫ ·3n -invariant G * (m, 2 ε · 3n, 4, 3) design relative to {0} × Z 2 ǫ ·3n , ǫ ∈ {1, 2}, which exists from the proof of Theorem 6.5. Applying Construction 4.2 gives a strictly Z 3m × Z 2 ǫ ·3n -invariant G * (m, 2 ε · 9n, 4, 3) design relative to mZ 3m × Z 2 ǫ ·3n .…”