Modularity is a natural instrument and a ubiquitous practice for the engineering of human-made systems. However, modularization remains more of an art than a science; to the extent that the notion of optimal modularity is rarely used in engineering design. We prove that optimal modularity exists (at least for construction)-and is achieved through balanced modularization as structural symmetry in the distribution of the sizes of modules. We show that system construction cost is highly sensitive to both the number of modules and the modularization structure. However, this sensitivity has an inverse relationship with process capability and is minimal for highly capable construction processes with small process uncertainties. Conclusions are reached by a Bayesian estimation technique for a relatively simple construction model originally introduced by Herbert Simon for the hypothetical production of a linear structure, taking into account errors that may occur in the work associated with the production of the links between the nodes in the structure for varied numbers of modules.