This study investigates the effects of Zn substitution on the magnetic properties of ∼5 nm cobalt ferrite nanoparticles (ZnxCo1−xFe2O4, where x = 0, 0.13, 0.34, and 0.55), demonstrating that Zn substitution induces complex changes in spin canting and prompts a redistribution of cations among the sublattices. We reconstructed the magnetic structure of these spinel ferrites by integrating the classical two-sublattice Néel model of ferrimagnetism with the data obtained from 57Fe Mössbauer spectrometry. Consequently, this research provides a comprehensive understanding of how Zn substitution tunes the magnetic properties of CoFe2O4 nanoparticles, offering valuable insights into the development of magnetic materials with tailored properties for various applications.