Abstract:The finite-volume technique is used to solve the two-dimensional shallow-water equations on unstructured mesh consisting of quadrilateral elements. In this paper the algorithm of the finite-volume method is discussed in detail and particular attention is paid to accurately representing the complex irregular computational domain. The lower Yellow River reach from Huayuankou to Jiahetan is a typical meandering river. The generation of the computational mesh, which is used to simulate the flood, is affected by the distribution of water works in the river channel. The spatial information about the two Yellow River levee, the protecting dykes, and those roads that are obviously higher than the ground, need to be used to generate the computational mesh. As a result these dykes and roads locate the element interfaces of the computational mesh. In the model the finite-volume method is used to solve the shallow-wave equations, and the Osher scheme of the empirical function is used to calculate the flux through the interface between the neighbouring elements. The finite-volume method has the advantage of using computational domain with complex geometry, and the Osher scheme is a method based on characteristic theory and is a monotone upwind numerical scheme with high resolution. The flood event with peak discharge of 15 300 m 3 /s, occurring in the period from 30 July to 10 August 1982, is simulated. The estimated result indicates that the simulation method is good for routing the flood in a region with complex geometry.