Binaural disparities are the primary acoustic cues employed in sound localization tasks. However, the degree of binaural correlation in a sound serves as a complementary cue for detecting competing sound sources [J. F. Culling, H. S. Colburn, and M. Spurchise, “Interaural correlation sensitivity,” J. Acoust. Soc. Am. 110(2), 1020–1029 (2001) and L. R. Bernstein and C. Trahiotis, “On the use of the normalized correlation as an index of interaural envelope correlation,” J. Acoust. Soc. Am. 100, 1754–1763 (1996)]. Here a random chord stereogram (RCS) sound is developed that produces a salient pop-out illusion of a slowly varying ripple sound [T. Chi et al., “Spectro-temporal modulation transfer functions and speech intelligibility,” J. Acoust. Soc. Am. 106(5), 2719–2732 (1999)], even though the left and right ear sounds alone consist of noise-like random modulations. The quality and resolution of this percept is systematically controlled by adjusting the spectrotemporal correlation pattern between the left and right sounds. The prominence and limited time-frequency resolution for resolving the RCS suggests that envelope correlations are a dominant binaural cue for grouping acoustic objects.