“…UMDA [14], Compact Genetic Algorithm [10], Population-Based Incremental Learning [1], Relative Entropy [13], CrossEntropy [5] and Estimation of Multivariate Normal Algorithms (EMNA) [11] (our main inspiration), which combine (i) the current distribution (possibly), (ii) statistical properties of selected points, into a new distribution. We show in this paper that forgetting the old estimate and only using the new points is a good idea in the case of λ large; in particular, premature convergence as pointed out in [20,7,12,15] does not occur if λ >> 1 points are distributed on the search space with non-degenerated variance, and troubles around variance estimates for small sample size as in [6] are by definition not relevant for us. Its advantages are as follows for λ large: (i) it's very simple and parameter free; the reduced number of parameters is an advantage of mutative self adaptation in front of cumulative step-size adaptation, but we show here that yet fewer parameters (0!)…”