Abstract:A plasma arc welding (PAW)-tungsten inert gas (TIG) hybrid welding process is proposed to weld pure nickel. In PAW-TIG welding, the arc of the PAW was first to be ignited, then TIG was ignited, while in PAW welding, only the PAW arc was launched. This paper investigated the effect of different welding processes on electrochemical and corrosion performance of between a pure nickel joint and a base metal in an aerated 1 M NaCl solution, respectively. The average grain size of the joint fabricated by PAW welding (denoted as J P joint) is 463.57 µm, the joint fabricated by PAW-TIG welding(denoted as J P-T joint) is 547.32 µm, and the base metal (BM) is 47.32 µm. In this work, the passivity behaviors of samples were characterized for two welding processes by electrochemical impedance spectroscopy (EIS), open circuit potential versus immersion time (OCP-t), and the potentiodynamic polarization plots. EIS spectra, attained with different immersion times, were analyzed and fitted by an equivalent electrical circuit. Photomicrographs of BM, J P , and J P-T were also taken with a scanning electron microscope (SEM) to reveal the morphological structure of the pit surfaces. Electrochemical tests show that the sequence of the corrosion resistance is BM > J P > J P-T . The size and quantity of the hemispherical corrosion pits of all samples are different. The corrosion morphology observations found a consistency with the consequence of the electrochemical measurements. The results show that an increase of the grain dimensions due to different heat treatments decreased the pure nickel stability to pitting corrosion.