Implantable high-accuracy, and low-power seizure detection is a challenge. In this paper, we propose a cascade architecture to combine different seizure detection algorithms to optimize power and accuracy of the overall seizure detection system. The proposed architecture consists of a cascade of two seizure detection stages. In the first-stage detector, a lightweight (lowpower) algorithm is used to detect seizure candidates with the understanding that there will be a high number of false positives. In the second-stage detectorand only for the seizure candidates detected in the first detector-a high-accuracy algorithm is used to eliminate the false positives. We show that the proposed cascade architecture can reduce power consumption of seizure detection by 80% with high accuracy, offering a suitable option for real-time implantable seizure detectors.