Modular design allows to reduce costs based on scaling effects. However, due to strong alternating effects between the resulting modules and products, methods and tools are required that enable engineers to use specific views in which the respective information can be linked and retrieved according to the situation. Within the scope of this paper, the model-based systems engineering (MBSE) approach is used to model the complex real-world problem of vehicle modular kits. The aim is to investigate the potentials in this context, how modular kits and products can be efficiently modeled and finally how MBSE can support modular design. In order to investigate this in detail, two extensive studies are carried out in a company over a period of three years. The studies show that modular kits lead to an increased complexity of development. Across industries and companies, the demand for reference product models is shown, which facilitate the unification of inhomogeneous partial models and serve as a knowledge repository for the development of future product generations. On this basis, a framework is derived which enables the reuse of large proportions of the product models of previous product generations. This framework is evaluated on the basis of five case studies.