The diffuse attenuation of downwelling irradiance, Kd (m−1), is an important property related to light penetration and availability in aquatic ecosystems. The standard Kd(490) product (the diffuse attenuation coefficient at 490 nm) of the global oceans from satellite remote sensing has been produced with an empirical algorithm, which limits its reliability and applicability in coastal regions. More importantly, as an apparent optical property (AOP), Kd is a function of the angular distribution of the light field (e.g., solar zenith angle). The empirically derived product thus contains ambiguities when compared with in situ measurements as there is no specification regarding the corresponding solar zenith angle associated with this Kd(490) product. To overcome these shortcomings, we refined the Kd product with a product termed as the normalized diffuse attenuation coefficient (nKd, m−1), that is equivalent to the Kd in the absence of the atmosphere and with the sun at zenith. Models were developed to get nKd from both in situ measurements and ocean color remote sensing. Evaluations using field measurements indicated that the semianalytically derived nKd product will not only remove the ambiguities when comparing Kd values of different light fields but will also improve the quality of such a product, therefore maximizing the value offered by satellite ocean color remote sensing.