Bone scaffolds with graded porosities or graded cellular bone scaffolds are new innovations of bone replacements and biomedical bone implants, especially in cases of long-bone defects, multitissue regenerations, and functional-controlled bone prostheses. The concepts of graded cellular bone scaffolds are based on the complexity of bone characteristics (graded hierarchical structures and heterogeneity), which aims to closer replicate the multifunctions of bone tissues. The designs of graded cellular bone scaffolds are highly fascinating with the relative anatomical, biological, and mechanical similarity to the replaced bones. While it is difficult for the graded designs to replicate the actual bone models, additive manufacturing (AM) techniques with computer-aided designs successfully create well-controlled models with comparable bone properties. Potential advantages of graded cellular bone scaffolds are enormous. Graded pores can direct types of cell regenerations for multitissue regenerations. Furthermore, graded pores promote a greater load-sharing to adjacent bone tissues than conventional scaffolds do, while both mechanical properties are similar. To summarize, bone implants with graded cellular structures can be fabricated using AM techniques, and their mechanical and biological performances can be tailored by modifying the internal architectures.