NK cells infiltrate human herpetic lesions, but their role has been underexplored. HSV can stimulate innate immune responses via surface TLR2, which is expressed on monocyte-derived dendritic cells (DCs) and NK cells. In this study, UV-inactivated HSV1/2 and immunodominant HSV2 glycoprotein D peptides conjugated to the TLR2 agonist dipalmitoyl-S-glyceryl cysteine stimulated CD4 T lymphocyte IFN-γ responses within PBMCs or in coculture with monocyte-derived DCs. NK cells contributed markedly to the PBMC responses. Furthermore, NK cells alone were activated directly by both Ags, also upregulating HLA-DR and HLA-DQ and then they activated autologous CD4 T lymphocytes. Using Transwells, Ag-stimulated NK cells and CD4 T lymphocytes were shown to interact through both cell-to-cell contact and cytokines, differing in relative importance in different donors. A distinct immunological synapse between Ag-stimulated NK cells and CD4 T lymphocytes was observed, indicating the significance of their cell-to-cell contact. A large proportion (57%) of NK cells was also in contact with CD4 T lymphocytes in the dermal infiltrate of human recurrent herpetic lesions. Thus, NK cells stimulated by TLR2-activating HSV Ags can present Ag alone or augment the role of DCs in vitro and perhaps in herpetic lesions or draining lymph nodes. In addition to DCs, NK cells should be considered as targets for adjuvants during HSV vaccine development.