Abstract:In this work, we investigate the temporal evolution of ground deformation affecting the ocean-reclaimed lands of the Shanghai (China) megacity, from 2007 to 2016, by applying the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique known as the Small BAseline Subset (SBAS) algorithm. For the analysis, we exploited two sets of non-time-overlapped synthetic aperture radar (SAR) data, acquired from 2007 to 2010, by the ASAR/ENVISAT (C-band) instrument, and from 2014 to 2016 by the X-band COSMO-SkyMed (CSK) sensors. The long time gap (of about three years) existing between the available C-and X-band datasets made the generation of unique displacement time-series more difficult. Nonetheless, this problem was successfully solved by benefiting from knowledge of time-dependent geotechnical models, which describe the temporal evolution of the expected deformation affecting Shanghai's ocean-reclaimed platforms. The combined ENVISAT/CSK (vertical) deformation time-series were analyzed to gain insight into the future evolution of displacement signals within the investigated area. As an outcome, we find that ocean-reclaimed lands in Shanghai experienced, between 2007 and 2016, average cumulative (vertical) displacements extending down to 25 centimeters.