Exposure to environmental polycyclic aromatic hydrocarbons (PAHs) has been associated with increased risk of cancer, but evidence for gender differences in this association is limited. The aim of this study was to examine the gender differences in PAHs caused early genotoxic effects such as oxidative stress and chromosome damage, which are potential carcinogenic etiology of PAHs. A total of 478 nonsmoking workers (272 men and 206 women) from a coke oven plant were recruited. We determined 16 environmental PAHs in their workplaces, and measured concentrations of 12 urinary PAH metabolites (OH-PAHs), plasma benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydotetrol-albumin (BPDE-Alb) adducts, urinary 8-hydroxydeoxyguanosine (8-OHdG) and 8-iso-prostaglandin-F2α (8-iso-PGF2α), and micronucleus frequencies in lymphocytes in all subjects. It showed that, women working at the office, adjacent to the coke oven, and on the bottom or side of the coke oven displayed significantly higher levels of urinary 8-OHdG and 8-iso-PGF2α, and lymphocytic micronucleus frequencies compared with men working at above areas, respectively (all P < 0.05). These gender differences remain significant after adjusted for potential confounders and urinary ΣOH-PAHs or plasma BPDE-Alb adducts. A significant interaction existed between gender and BPDE-Alb adducts on increasing micronucleus frequencies (Pinteraction < 0.001). We further stratified all workers by the tertiles of urinary ΣOH-PAHs or plasma BPDE-Alb adducts, and the above gender differences were more evident in the median- and high-exposure groups (all P < 0.05). In conclusion, women were more susceptible than men to oxidative stress and chromosome damage induced by PAHs, which may add potential evidence underlying gender differences in PAH exposure-related lung cacinogenesis.