Substantial amounts of algal crusts were collected from five different desert experimental sites aged 42, 34, 17, 8 and 4 years, respectively, at Shapotou (China) and analyzed at a 0.1 mm microscale of depth. It was found that the vertical distribution of cyanobacteria and microalgae in the crusts was distinctly laminated into an inorganic-layer (ca.0.00-0.02 mm, with few algae), an algae-dense-layer (ca.0.02-1.0 mm) and an algae-sparselayer (ca.1.0-5.0 mm). It was interesting to note that in all crusts Scytonema javanicum Born et Flah (or Nostoc sp., cyanobacterium), Desmococcus olivaceus (Pers ex Ach., green alga) Laundon and Microcoleus vaginatus Gom. (cyanobacterium) dominated at the depth of 0.02-0.05, 0.05-0.1 and 0.1-1.0 mm, respectively, from the surface. Phormidium tenue Gom. (or Lyngbya cryptovaginatus Schk., cyanobacterium) and Navicula cryptocephala Kutz.(or Hantzschia amphioxys (Ehr.) Grun. and N. cryptocephala together, diatom) dominated at the depth of 1.0-3.0 and 3.5-4.0 mm, respectively, of the crusts from the 42 and 34 year old sites. It was apparent that in more developed crusts there were more green algae and the niches of Nostoc sp., Chlorella vulgaris Beij., M. vaginatus, N. cryptocephala and fungi were nearer to the surface. If lichens and mosses accounted for less than 41.5% of the crust surface, algal biovolume was bigger when the crust was older, but the opposite was true when the cryptogams other than algae covered more than 70%. In addition to detailed species composition and biovolume, analyses of soil physicochemical properties, micromorphologies and mineral components were also performed. It was found that the concentration of organic matter and nutrients, electric conductivity, silt, clay, secondary minerals were higher and there were more micro-beddings in the older crusts than the less developed ones. Possible mechanisms for the algal vertical microdistribtion at different stages and the impact of soil topography on crust development are discussed. It is concluded that biomethods (such as fine species distribution and biovolume) were more precise than mineralogical approaches in judging algal crust development and thus could be a better means to measure the potentiality of algal crusts in desert amelioration.Abbreviations: I.V. -Important Value; PLM -Polarizing Light Microscope; SEM -Scanning Electron Microscopy